If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35=x^2
We move all terms to the left:
35-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+35=0
a = -1; b = 0; c = +35;
Δ = b2-4ac
Δ = 02-4·(-1)·35
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*-1}=\frac{0-2\sqrt{35}}{-2} =-\frac{2\sqrt{35}}{-2} =-\frac{\sqrt{35}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*-1}=\frac{0+2\sqrt{35}}{-2} =\frac{2\sqrt{35}}{-2} =\frac{\sqrt{35}}{-1} $
| x+1/2+x-3/3=3 | | (2x+5)/4=(x-3)/6 | | x-5/2-2=x-8/3 | | 3(w-5)-2(1-w)=3-3(4-w) | | -12s–8s=20 | | 78-u=234 | | 5(x+1)=7 | | 24+12=6x | | 1/2(x+3)=2/5(1/3+x) | | 18+4x=20x-8-(-x-2+5x-13) | | 180=(4x+30)+(8x+90) | | 1÷15=x | | 11=(75x)/x | | 8(z+3)-3(z-1)=2(z-1)+2(z-1) | | 90=(3x+38)+(9x+28) | | 4.55-1.5(6m+2)=6 | | .4y+1=1.6y-5 | | 0.54x=5 | | 4(2x-7)-5=4(x-4)+3 | | X=6x-7/2x+5 | | 180=(7x-4)+(9x-40) | | -x^2+18x-72=0 | | (-x/3)=-8 | | -a/4=7 | | 3t-2=t-2 | | 180=(7x+4)+(9x+40) | | 5^n=125 | | 1/2(b+2)+3b=-1 | | 7+.5x=3+1x | | 42=7(x=5) | | -(-5+x+1/5x)=70 | | -2(9y+3)-7y=10y-(12y+9) |